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Abstract : Aiphard is a programming language whose goals include supporting both the
development of well-structured programs and the formal verification of these programs.
This paper attempts to capture the symbiotic influence of these two goals on the design of
the language. To that end the language description is interleaved with the presentation of
a proof technique and discussion of programming methodology. Examples to illustrate both
the language and the verification technique are included.
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Introduction

The principal subject of th is paper is the symbiosis between program verification
and programming methodology, especiall y the way the relationshi p has affected the design
of a particular programming system , Aiphard (currentl y under development at Carnegie-
Mellon University) . The original design goals for Aiphard were conce rned with both
methodology and ver ification. We wished to produce a programming environment which
supported and encouraged the development of ‘swe ll structured ” programs , and which also
made the verification of those programs easier than in existing languages. We have been
surprised and extremely pleased at the degree to which these concerns have reinforced
each other to produce a coherent system design. Although we shall discuss language
design and verification separately, our real goal in this paper is to show that they are not
independent , and that when they are treated together a pleasing union results.

Our ultimate concern is with the cost and quality of real programs. It is by now
generally accepted that programming costs are too high, quality is too low, schedules are
too often missed, and- so on. We assume that the reader is already familiar with the
discussion of the situation and with some of the proposals for remedying it [Baker72,
Brooks75 , Buxton7O, Dahl72 , Dijlc stra68a , Goldberg 73, Gries74, Naur69, Parnas7l ,72a,
Weinberg7l, Wirth7 l , WuIf 72].

The area called progra mrntit g methodo logy or structured progr arrzr ning is concerned
with those aspects of the current software problem which result from our human
limitations in dealing with complex ity. Large programs , even not-so -large ones, are among
the most complex creatio ns of the human mind. They are often too complex for their
creators to understand. This “unmanageable complexity ” is at the root of many problems
with contemporary software. Structured programming has addressed this situation by
attempting to reduce the comp lexity of programs (Or at least their apparent complexity),
by restricting either the form of the programs (by eliminating the gQjg., for
example[Dijkstra68b)) or the process of creating them (as is the case with stepw~se

refinement (Wirth7 l]). In both cases the intent is to match the complexity, as we humans
perceive it, to the limitations of our understanding.

Problems that arise from repeated modification of large programs are often ignored
in the literature on programming methodology. Most large programs are not simply
written and run; rather , they are continually modified and enhanced. The same limitations
which effectively prevent humans from dealing with the complexity of large programs also
prevent them from anticipating all the ways their programs will be used. Thus the initial
program is seldom adequate for all its eventual uses, and it experiences constant pressure 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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for improvement and expansion . Indeed, the more success ful a program is, the more likely
it is to be modified: only programs no longer in use are safe from this pressure . In many
cases the cost of modification exceeds that of initial development , often by a large amount
[Goldberg73].

Although modification issues have not rece ived the attention we believe they
deserve , the concerns of programming methodology are especiall y relevant to solving
them . Much of the effort  involved in modif ying an extan t program is devoted to simply
understanding what is already there. If what’ s there is overly complex , modify ing it can

be difficult , time consuming, and suscep tible to errors.

Responding to the modificat ion issue adds a dimension to programming methodology.
It is no longer adequate for the ori ginal programmer to develop the program in a well-
structured manner; if the program is to be modifiable , the structure of the development
must be retained in the ultimate program tex t. The future reader must be able to perceive
the structure and use it to understand what the program is doing. Thus , a major objective
of the Al phard desi gn is precisel y retention of this st ructure.

The research on program verification has been concerned with another approach to
alleviating the problem s with current software -- proving that the programs we write are
in fact implementations consis tent with their specifications (Floyd67, Hoare69,72b,
London75, Manna74, Naur66]. No matter how clearl y we write , we must recognize that
programming demands absolute precision. To have real confidence in our programs we
must develop them wit h a degree of precision comparable to that found in mathemat ics. In
short , we must aim toward proofs of our programs , even if the proofs are not in fact
carrie d out.

Program proofs tend to be large (at least as large as the program) and tedious. It is
not reasonable to expect them to be done “ by hand” as a mathemat ician would; the human
effor t would be unreasonable and the probability of error too high. Automatic proof aids
wil l be needed if we are to find proofs with a reasonable amount of effort. Existing
automa ted methods are not strong enough to cope with the comp lexity of real programs , at
leas t as those programs are currentl y formula ted; this has prohibited routine verification
of production programs. The Alphard response, as we shall see, has been an attempt to
modularize the proofs so that each individual segment is within the ability of present, or
easily attainable, automated proof aids.

Recently, attention has turned to verificatio n of collections of related functions as a
means of segmenting the verification task along the same lines as the decomposition of the
program itself. For example, proof techniques described by t4oare (I4oare72b] and Spitzen
and Wegbreit [Spitzen75, Wegbreit7 6] can show that a data representation and its
associated operations possess the expected properties, provided that the representation
is directly manipulated o~1y by the associated operations and not by other parts of a
program. This decomposition and factorization permit parts of the verification to be

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -~~ -~ - - ~~~~~~~~~~~~~ --——~~~
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performed for each operator definition instead of for each use . Ultimately, the techniques
rely on induction on the number of data operations performed. Related proofs may be
found in (Guttag75, 76b, Zilles75].

Well structured , understandable, easil y modified, and demonstrabl y consistent
programs can in princi ple be written in any programming language. In practice, however,
we know that the presence or absence of certain features in a language can materially
affect all these desirable properties. We also know, fr om both natural and artificial
languages , that the language we use to express our ideas can shape the ideas themselves
(Whorf56). Thus, by choosing language fea tures and structure properly we can hope to
exer t a positive influence on the programs written in the language.’

Instead of starting with an existing language and focusing on either methodology or
verifica tion individually, we therefore chose to treat the issues together in a new language
design.

This paper , together with its companions [London76, Shaw76b], briefly introduces
the Alphard language, discusses the verifica tion issues in this general context , and then
elaborates on the language mechanisms suggested by this approach to verification. This
cycle is repeated several times for various aspects of language and verification; several
examples are developed. The closing section returns to the symbiotic relation between
methodological and verification concerns.

Preview of the Aiphard Language

A key concept in structured programming is abstraction: the retention of the
essential properties of an object and the corollary neglect of inessential details. For
examp le , all programming la~iguages provide their users with an abstract machine from
which inessential details such as the specific assignment of memory locations has been
eliminated. Abstraction is im’portant to structured programming precisely because it
permits a programmer to ignore inessential detail and thereby reduce the apparent
complexity of his task.

Several abstraction techniques have appeared in the literature on structured
programming. For example, in stepw is. refinement or top-down design , the top-level,
abstract description of a program is refined to a description in a programming language in

Of course , in a certain sense any attempt to design a structured programming
language is doomed to failure. A perverse programmer can easily defeat any attempt by
the language to guarantee clarity or correctness. The language can only encourage good
structure and provide the opportunity for verification -- it cannot enforce either one.
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a series of progressively more concrete s teps [Dijkstra72 , Wirth7 l). In modu lar

decomposit ion [Parnas72a , 721i}, (lie final (source) version of a program is divided into
units; each unit is the realizat ion of some abstraction. Parnas further advocates that the
implementation of each of these abstractions be hidden from its users tes t they
inadvertently misuse knowledge of the implementation (Parnas7l].

The gross organization of At phard programs is based strong ly on Parnas’ ideas,
al though not on the details of his proposals. This sty le of program decomposition provides
the opportunity to isolate and textuall y localize all of the details about the implementation
of an abstractio n . This has several advantages over more traditional organizations:

- The places where modif ica tions must be made are more likely to be close
together.

- A smaller portion of the program will have to be reverified when a change
is made.

- The user of the abstraction may ignore the details of the implementation.

- It becomes possible to make absoLute state m ents about certain things (e.g.,
data structures ) which are independent of even perverse programmers.

- The implementor of the abstraction may (sometimes ) ignore the complexity
of the environment in which the abstraction wil l be used.

The specific language mechanism used to capture this style of decomposition is derived
fr om Simula classes ~Dahl72]; a similar adaptation has also recentl y appeared in CLU
[Liskov74 ,75a], and related features are beginning to appear in other languages (see, for
example , [OataConference76]). At this point we shaH only introduce the general nature of
the construct and the Alphard notation; more details wi lt follow an exp lanation of the
verifica tion issues.

The abstraction mechanism in Alphard is called a ~~~~ It permits the programmer to
introduce a new abstraction into the program; in most ways the newly introduced
abstraction will resemble a new type as that term is used in other programming
languages.2 

-

2 In general, the abstraction introduced by a ~~~~~ need not be a type in the
traditional sense. We use the word “type” informally in this paper, however, and the
reader will not be misled too badly by thinking in those terms.
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Thus, in an Aiphard program one might find a definition such as:

!.~iri~i complex—
beginform

endform

This definition introduces a new abstract notion, “complex variab le”. (Here and in the
sequel we shall use ellipses, -. . .“, t o denote text whose details we wish to ignore for the
moment.) The form contains all the information relevant to the implementation of the
abstract ~~ ion. In this case , for example , we would find both the definition of the data
structure to be used in representing a complex variable (e.g., two real variables) and the
definition of . a set of operations on them (addition, multiplication, assignment, etc.). The
j~~j~ also gives a formal specification of the abstract properties of these complex
variables, but the full story of that must wait a bit.

Once such a definition is written, a programmer can write an abstract program using
the newl y defined notion; variables of the new type may be declared, the defined
operations may be performed, and so on. For example , one may write:

local x,y,z:compiex;

x - x ~y*z;

because certain features of the language allow new functions to be associated with the
infix operations.

All of this is, of course , very similar to the notions found in extensible languages
(Schuman7l]. However , the emphasis is considerably differen t: we are not interested in
general syntactic extension. Rather, we are concerned with encapsulation, separating the
concrete realization (implementation) of an abstraction from its use in an abstract program.
Thus, f or examp le, all of the representational information in a ~~j j ~ is inaccessible to the

abstract program; only those properties defined in the formal specification are accessible.

So much for a preliminary peek into the nature of Alphard. In the following section
we describe a technique for verify ing the properties of a ~~~~~~~~~ Since so much of the
syntax and semantics of Alphard are tuned to this verification technique, we shalt explain
the technique f irst , then present the language via an extended example. For now, the
important property of the language is its ability to separate the use of an abstraction from
the definition of its concrete representation. The verification technique exploits this
separation and permits the implementation (the j~~~) to be verified independently of the
abstract program in which it is used. 
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In order to show as clearl y as possible the relation between language and
veri f icat ion we have omitted a number of issues from this discuss ion of Alphard. These
include data representat ion , reference variables , storage allocation , statement and
expression syntax , exception handling, input-output , litera ls , and other things not needed
for this exposition. At least for the programs given here, the reader ’s intuition and good
sense should suf f ice to fill in the gaps.

Verification of Forms

Our overa ll strategy for verif y ing Alphard programs parallels the program
decomposition imp licit in the notion of a form. We shall presume a relativel y small main
program expressed in terms of operations on abstract objects natural to the problem.
This main program is verified by traditional methods (e.g., inductive assertions [Floyd67,
Marina74(chapter 3), NaurB6]) , treating the specifications of the abstrac t objects and
operati ons as if they were primitive. Then, to justif y the use of the specified properties
of the abstract objects we verif y that the concrete implementation of eac h abstraction is
c onsistent with its specif ications. In general the implementation of an abstraction will be
given in terms of further , Lower level , abstract obj ects and operations on them. Thus the
verif ication of the algorithms used to implement an abstraction wilt be similar to the
verif icat ion of the most abstract (top level) program. An obvious requirement of this
appr oach is that each of the implementa tions be correct , or verified , if the ultimate
program is t o be verified. Roughly speaking, the verificati on wilt show that the specified
relations exist between all abstractions and their implementations so that each
implementation “behaves like”, or models, its abs traction.

The key t o the utilit y of this appr oach is separating the proof of each program that
uses an abstraction from the proof of the implementation of that abstraction. Several
advantages accrue from this separation:

- Individual proofs are kept manageably small.

- Program modifications generally imply reverification of only the affected
program portion, usual ly a sing le f orm (exceptions occur when the
modification affects the specification of the abstraction implemented by
the form).

- Although the entire program can be considered correct only when all
portions have been verified , it is feasible for certain portions to be
unverified during program development. Alternatively, some verif ied
forms may be available from a library while others may have been
developed and verif ied by a subgroup independently; these forms can be
used confidently during the development of further programs or forms.

~

--- --

~ 

~~~,-~~~~—-—-—- - -- - -
~~~~~~~~~~~~~~~~~~~~

--
~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - - ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~



- ,

ALPHARD: Introduction to Language and Methodology Page 9

The remainder of this section explicates a proof methodology which permits this
separation. It is based on ideas from koare ’s notable paper on correctness of data
represent at ions [Hoare 7 2b).

Suppose that we have an abstract type , 1, that “ y ” is an arbitrar/ object of type T,
and tha t  A i,...,An are abstract operations defined on objects of type T. Our first concern
will be t o define the objects of this type and the operations on them in a manner which
permi ts a hcg her level program to use these objects and be verified easily. This definition
consists of three parts: the ~pec if icati ons, which constitute the user ’s sole source of
information about the 

~~~~~ 
the representati ,~~ which describes the representation and

related properties of an object of this type , and the implementation, which contains the
definitions of the functions that can be applied to an object.

In the specifications , we first define the class of objects belonging to this type by a
— predicate which, for reasons which become clear later , is called the abstract invariant , 1a~Second, since the abstract t ype , 1, may be defined only under certain assumptions about

the parameters supplied when it is created , we capture these assumpti ons by a predicate,
1
~req~ 

Third , we give another predicate 
~ init’ w hich characterizes the initial value given to

an abs tract object when it is created. Fourth, we define the abstract operations by their
input-outp ut relat ions , using pairs of predicates which characterize their effect. We call
these 

~ pre and f~post in F4oare ’s notation [koare69J they say:

~pre~
Y
~ 

{ A 1 } f~post (y)

charac terizing the effect of the operation A1 by asser ting that if the predicate f~pre holds
before the operation is executed , then ‘~post will hold afterwards. A, is assumed to read
or change only y.

Our next concern will be to characterize a concrete implementation of these abstract
objects and operations. Suppose that “x ” is the concrete representation of an object of
type 1, and hence, in general , “x ” will be a collection, or record of concrete variables.
Further , suppose that C i,...,Cn are the concrete operati ons which purport to be the
implementations of the abstract operations A 1,...,A~. The se t of concrete objects is also
defined by a predicate , which we shalt cal l the concrete invariant , ~ The relation
between a concrete object , x, and the abstract object that x represents may be expressed
by a representation functio n, rep :

Note that the rep function may be many-one; that is, more than one concrete object may
represent the same abstract object. ~~~ mus t , however , be defined f or all x satisfying IC.

The concrete operations, C,, must also be charac terized in terms of their input-
output relations. To avoid confusion in the sequel we shall refer to these predicates as

a 
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the input and output conditions , /~in and I~out~ 
ra ther than as pre and post conditions.

Thus ,

~~~~ ~ ~i 1
~out~~

We assume that each C1 alters or accesses variables only in x.

Finally, we shall presume a distinguis hed concrete operation , C~ 11, whic h is invoked
whenever an object is created; this operation is responsible for initializing the concrete
representation.

Now, at an intuitive level , we wish to show that the c oncrete representation and the
imp lementation of the concrete operations are “correct” . More specifically, we wish to
show that it is safe for the programmer wor king at the abst ract level to prove the
c orrectness of his program using onl y the abstract specifications of the types he uses:

~ req’ (~init’ and (for each abstract operation) (
~pre and i~pos t ~ 

In the sequel, we of ten
discuss an arbitrary function whose corresponding abstract and concrete operations are
deno ted by the symbols A and C, respectiv ely; our remarks are therefore imp l ici t ly

quantified over the set of such operations.

We have chosen to break the proof of the correctness of the concrete rea l izat ion
into four steps. The first step establishes the validity of the concrete representation. The
second establishes that the conc re te initialization operation is sufficient to ensure that

and hold initiall y, provided f
~req is satisfied. The third establishes that the code of

the concrete operations is in fact characterized by the input-output assertions , ~~~ 
and

~ out’ and furthermore that 1, is preserved. The las t step establishes the relation
between the concrete input-output assertions and the abst ract pre and post conditions.
After describing the proof steps we discuss the relationship between this methodology
and Ho?re’s.

For the Form
1. Validity of the Representation3

~~

2. Initialization of an Object
1
~req { Cinit } f~~1t (rep( x

~ 
A

This conditi on is actuall y s lig htly stronger than necessary since we only need to
ensure t hat those representations reachable by a finite sequence of applications of the
concrete operations actual l y represen t abstract objects ; in practice , however , the stated
theorem is not rest rictive since can be made stronger if necessary. Note, by the way,
tha t we need not prove the dual 

~
1at

~~ 
implies the existence of an x such that y—rep(x) A

since this is guaranteed for reachable abstract objects by steps 1-4.

~~~~ . _ & 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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F or each function
3. Verification of Concrete Operations

A I
~

(x) { C I f?0~t (x ) A

4. Relation Between Concrete and Abst ract Specifications
4a. I

~
(x) A 

~pre 0eP~~~ ~4b. Ic(x) A ft pre~ eP~~
’
~ 

A ftout~~ 
D i~~o5t (reP(x))

where the primed variable in step 4b represents the value of that variable pr ior to the
executi on of the operation.

Note that steps 1 and 4 are theorems to be proved while 2 and 3 are standard
ver ification formulas. Only the last step, 4, should require further explanation. 4a ensures
that whenever the abst ract operation A could legally be applied in the higher level,
abs tract program (that is, whenever ‘~pre holds), the input assertion of the concrete
operation, f~~, 

will also hold. 4b ensures that if the concrete operation is legally invoked
(t hat is , Ic(x)A i~pre (reP(x ’)) holds), then the output assertion of the concrete operation,

1~out~ 
is strong enough to imply the abstrac t post-condition, apost . The four steps are

sufficien t but not necessary for the proof.

Hoare ’s similar technique for verif y ing the correctness of the implementation of an
abstraction differs from the one described above in two respects. First , his approach does
not deal exp l ici t l y with the issue of the validity of the representa tion, or distinguish
explicit l y between the concrete and abstrac t invariants. Second, he did not break the
proof int o several steps; we did so because we felt it would add clarity, would allow easier
modifications both of forms and verifications , and would facil ita te mechanical verification.
In any case , excep t for step 1, we shall show that the two techniques are equivalent in the
sense that from the proofs of one approach, we can derive the proofs required by the
other.

Hoar&s technique requires our step 2 and, for each func tion, a combination of steps
3 and 4 which is expressed in our notation as

f~pre~ eP~~~ 
A I

~
(x) { C 1 (~ 05t freP(~~ ~

To obtain the proofs required by Hoare’s approach from our proofs , merge s teps 3, 4a,
and 4b, using the rule of consequence:4 The first premise for the application of the

conseq uence rule is

4 The rule of consequence is:
p
~~ Q Q ( S ) R , R~~ T

P { S } T

_

~

.i

~

_ ,_

~

__ _ ._ __ . _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _
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/~pre eP~~fl 
A IC(X ) D 

~~~~ 
A A f~pre~ CP~~fl

w hich is step 4a with I~
(x) A f~pre ep(x)) added to the conclusion. The second premise is

A I
~

(x) A t~pre ep(x)) { C ) I~(x ) A /~o~t (x) A

whic h is obtained by the consequence rule using 3, and then noticing that 
~~~~~~~~~~still holds after C since C does not alter x ’. The third premise is 4b with the hypothesis

added to the conclusion.

Conversely, to obtain our proofs from Hoare’s, first note that 
~~ 

and f’out are not
included in Hoare’s proofs . We are therefore free to choose ‘~in to be f~pre ePf.x)) and

~ out to be f~ o5t (reP(x)). Step 3 becomes exact ly the combined form, and steps 4a and
4b are trivially provable. Thus the two techniques are equivalent.

In some cases it may be appr opriate to show the combined form directly for each

• func tion. Hoare proves the theorem that if step 2 and the combined form have been
shown to hold for the implementation of some abstraction , then a concrete program using
this implementation will pr oduce the (representation of the) same result as an abst ract
program would have.5 The proof of this theorem uses induction on the number of
app lications of operations in the abstract program. Our steps 1 and 2 establish the basis
step; steps 1, 3, and 4 are used to establish the induction.

One might expect from this description of the methodology that the relationship

rep(x l) = rep(x2) ~ A(rep(xl)) = A(rep(x2))

would be true for arbitrary abstract functions A. Unfortunately, it is false. For example,
let xl  and x2 be equal but not necessarily identical representat ions of a set S (i.e., xl and
x2 contain exactly the same elements , but in different orders); let the function A select an
arbi trary element from S. The post condition for A is just x C S, w hich does not specify
uni que ly which element to select.

In the next section we shall return to the description of Atphard and in particular to
how the various pieces of information required by the proof technique are supplied in a
form. First , however , we must say a few words about the predicate language in which the
/Vs are expressed. The real issue, of course , is the language used for expressing the
abstract predica tes: ‘a’ f~init’ ft pre~ 

and 
~~~~~ 

since the concrete predicates use the same
language as the specification of the next lower level abstractions.

There remains some controversy about the best specification techniques
(Liskov75bJ. We do not wish to enter that debate here; we are content to await the

5 Assuming, of course, that both the abstract and concrete programs terminate.

I1

~

T1Ti

~ 

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~
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emergence of one or more appro priate techniques and then adopt them . For the purposes
of this paper , however , we must use some scheme from among the exis ting techniques. As
Gut tag [Guttag 76aJ has noted , the operational spec tf ~cat~ort technique we are using seems
to be more easily used by current programmers , but may have other problems , such as

overspecification. Axiomatic techniques (may) avoid these problems at the expense of
being less intuitive (at least until one becomes thoroughly familiar wi th them). We are
neither advocating nor rejecting these two techniques here; Alphard should accommoda te
both, and we have chosen one we are comf ortable with.

In this paper , we shall presume the exis tence of a suitable collection of recognized
mathematical entities , such as integers , booleans , sets , sequences , multise ts , matrices, and
the operations defined on these entities. We assume that they have been defined
precisely and that a rich collection of useful theorems has been proved for each.

Our specifications will be stated in terms of these mathematical objects; in effect
they will characterize a possible imp lementation in terms of the abstract mathematical
entities. Thus, for example , in the next section we shall define an implementation of a
(res tricted ) stack. The specification wi ll characterize the stack operations in terms of

• operations on a sequence , with the sequence itself used to capture the state of the stack.

A precise definition of the notion of a sequence , adapted fr om [Hoare72a), has been
included as Appendix A. Although the notion is defined formal ly there , the following brief
informal defini tion is included here to aid the reader in understanding the examples which
f ollow.

deno tes the sequence of elements specified; in particular , ~~<>N

denotes the empty sequence , “nu llseq ”.

s ~ <x> is the sequence which results from concatenating element x
at the end of sequence s

length(s) is the length of the sequence “s”.

first (s) is the first (leftmos t) element of the sequence “s”.

trailer(s) is a sequence derived from “s” by deleting the first element.

las t(s) is the last (rightmost) element of the sequence “s”.

leader(s) is a sequence derived fr om es” by deleting the last element.

seq(V ,n,m) where “V” is a vector and “n0 and “m” are integers, is an
abbrevia tion for the sequence N<Vn,Vn+ir..,Vm>”;
alternatively, seq(V ,n,m)~seq(V,n,m- 1) Vm.

Note: first , trailer , last , and leader are undefined for “ <> “
.

-~~ - .---“-rn - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _
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Pane 14 Verification of Forms

Introduction to Aiphard

This section is an informal discussion of the Alphard language facili ties which
support the verif ication tcchnique introduced above. Since we are primarily concerned
with s tructural and verif ication issues we shall not conce rn ourselves with minor syntactic
aspects of the language or with those (sometimes major) features of the language which
do not bear directly on these issues. We expect that the reader ’s familiar ity with other
languages will be adequate for him t o infer both the syntax and semantics of those
constructs whose formal definition is omitted.

Muc h of the exposition is by example. We develop a definition of stacks and a
program which uses stacks. These examp les illustrate both the abstract definition facili ty
and the interact ion of verification considerations with language. We chose the stack for an
examp le because it is familiar t o most readers and because the Aiphard program can be
compared to other descriptions.

Forms

Imagine that while designing some program we found it desirable to use the notion
of a stack -- in particular , a stack whose elements are integers. We presume that our
language does not contain stacks as a primitive concept , as indeed Al phard does not, so we

want to introduce it as a new abstract ion. Suppose further that an a priori depth limit is
known or desired, so we need not define a general stack mechanism, only one which
behaves like a stack so long as its depth does not exceed some predetermined maximum.

We shall lean heavily on the verification methodology developed above to explain
the rationale for the various components of a form definition. We shall present the
definition piecemeal , wi th each piece corresponding to some aspect of the verification
technique. Starting at the top, the abstraction of a finite-depth stack of integers will be
defined by a ~~~~~ such as:

f.2j~ istack(n:integer)—
beginform

endform;

where “n” is the maximum permissible depth of the stack. Note that we must carefully
distinguish between the abstract concept introduced by such a definition and an &nsta~ice 

—- --~~~~~~---—~~~~-----
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of that concept. In general there may be many instances of an abstraction. Instances of
abstractions are introduced into an Aiphard program in several ways , but a common one is
by declarations. Thus,

local x:is tack(50);

has the effect of creating an instance of an istack and giving the name Nx N to this
par ticular instantiation. In the jargon of programming languages , this declaration buids the
name N H  to an instantiation of istack.

We must now decide what the abs tract properties of our stack are to be. We must
decide both what operations the abstract program shall be allowed to perform and what
effects these operations shall have. In this case we shall allow only four operations:
“push” makes a new entry at the top of the stack , “pep” deletes the current top element
of t he st ack , “top” returns the value of the current top element of the stack , and “empty ”
re turns “true” iff the stack is empty. (Obviousl y we could have chosen a more
comprehensive set , but this will suffice for our first example.)

The abstract program which uses the notion of an istack will apply these operations
to instances of the abstraction. The form must provide a precise definition of these
opera tions together with the concrete representation an~ opevat~ons to be used in
implementing them. Thus, in general, a form is composed of three parts: specifications ,
representation , and implementation.

~~~ 
istack(n: integer) —
beginform

~2~cif ica tions . .

representa tion . .

implemen ta t ion . . . ;
endforrnj

At the very least t he ~pecifications must provide the names of the operations
supplied by the 

~~~ 
together with the types of their arguments and results. In order for

the user to be able to understand and use the abstraction solely in terms of the
specification, and to permit verification, we must also include (1) a definition of the
abstrac t domain, (2) the initial value of each entity of the abstract type, and (3) the pre
and post conditions for each operation. Using the mathematical notion of a sequence,
defined earlier, we can write:

- - - -  --~~~ . .—. .- -- -_ - - - - --—‘.-—- ~ --~~~~~~~~~~ -—-- ---~--- - - - 
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form istack (n: integer) =
beginform
specific ations

requires n>O;
let istack = . . x~ . . > where x~ is integet;
invariant Oslength(istaclc )~n;
initially istactc=nu llseq;
function

push(s: istack , x :integer ) pre 0 � length(s) < n p~~ s=s’wx ,
pop(s: istack ) pre 0 ~ length(s) ~ n 

~~~ 
s = leader(s ’),

top(s: istack ) returns x: integer

~~ 0 < length(s) ~ n ~~~ x = las t(s ’),
empty(s: istack ) returns b: boolean

= (s=nullseq);
representation . .
implementation .. .;
e ndfq~~

Note how various pieces of information about the abstraction imp lemented by the
form are introduced: the requires clause specifies /

~req’ the invarian t clause specifies ‘a’
the ,nit~~j~ clause specifies 

~~~~ 
and each of the func tion clauses specifies 

~~~nre and

~ post for that function.6 Furthermore , no particular implementation is demanded or
precluded.

In t his case, then, the notion of an istac lc is exp lica ted in terms of the mathematical
notion of a sequence of bounded length. The operation “pop”, for example, is defined to
produce a new sequence which is just like the old one except that its last element has
been deleted. (As before , the primed symbols in the ~~~~~~~~ conditions, e.g., s’, refer to the
value of the (unprimed) symbol prior to execution of the operation.)

This particular example allows us to illustrate something which was awkward to
introduce in the more abstract discussion in the previous section. Because the ~~~~ may
be parameterized to allow each user to select his own maximum depth, it is more properly
a “type generator ” (that is, a defintion of a set of types) than a simple type definition.
A l t hough we will expand on this point at some length in a subsequent sect ion, we note
here that not all values of the parameters may make sense. In this case , for example, a
stack of negative size is senseless. Restrictions on the parameters are conveniently
expressed in /

~req’ that is, the requires portion of the specifications.

6 To shorten the pre, post , in, and out conditions in this paper , we of ten, by
convent ion, omit assertions about variables which are completely unchanged. Thus, for
example, we have omitted s=s ’ from the post condition of top. Such omitted assertions are
nevertheless used in the proof steps. We also generally avoid in our proofs the legitimate
concerns expressed in the term “clean termination” -- such matters as array bounds
checks, overf low , division by zero, and other inexecutable operations.

_ _ _
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The representation portion defines the data structure which each instantiation of
the f~ j~ will use to represent the abstraction. It also specifies: (1) the initialization to be
perf ormed whenever the form is instantiated, (2) the reo function, which relates concrete
to abstract descriptions, and (3) the concrete invariant. Thus, this section provides the
major information relating an abstract entity and its concrete representation.

For this examp le we have chosen a simple representation for the stack. A vec tor
holds the contents of the stack and an integer variable points to the top of the stack.

!2rin istack (n: integer):
beginf orm
specifica tions . . 4
represent at ion

unique v: vect or(integer,l,n), sp: integer m u  sp 
~
- 0;

r.~ (v,sp) — seq(v,1,sp);
invariant 0 ~ sp < n;

implementat ion. . . ;
endform;

The first clause of the representation portion describes the concrete data
structure(s) used to represent the abstraction; the key word unique used here indicates
that the following data structure(s) are unique to each instantiation as opposed to being
shar ed by, or common to , all instantiaiions. The rep clause specifies the representation
f unction which maps concrete objects to abstract ones. The invariant clause specifies 1~
Also, note the m i t  clause attached to the data structure declaration; this is the
distinguished operation, Cinit, mentioned in the previous section. The initialization
operation is automatically invoked whenever an instantiation of the !~rit~ 

is crea ted, and is
responsible for establishing 

‘~jnjt~

We would also like to point out the use of the names “vector ” and “integer” in this
example. These are not primitive types of the language; they are simply ~~~ names.
They happen to be the names of forms which will be automatically provided along with the
compiler , but they are not special in any other way.

From experience in writing forms, we have found that it is convenient to add
another piece of information to the representation: a set of 

~~~~ 
definitions. These states

are merely a shorthand for a set of boolean conditions, but, as we shall see below, they
help to accent certain interesting situations. A more complete version of the
representation portion of the form is thus:

_ _ _ _ _  - 
~~~~~~~~~~~ - -~

_ _ _ _
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t2.r.rn istack (n: integer):
beginform
specifications . .
representation

unique v: vector (integer ,1,n), sp: integer nit sp 4- 0;
rep (v ,sp) = seq(v ,1,sp);
invariant 0 � sp ~ n;
s t ates

mt when sp = 0,
normal when 0 < sp <n ,
full when sp —

err otherwise ;

~~plementation . .
endf or m;

The implementation portion of the form contains the bodies of the functions listed in
the specifications , together with their concrete input and output assertions and
In defining these function bodies we make use of the states defined in the representatiqri
par t. The 

~~~~ 
of t he representation is determined when any func tion in the !.~rin 

is
invoked, but is not re-evaluated as c hanges to the representation are made within a
func tion body. Thus the state may be used, as in this example , to select one of several
possible bodies for a function when it is called. In this particular example the ability to
selec t alternate bodies is used only for err or detection, but it is certainly not limited to
this use.

!.~rrn istaclc(n: integer) —

beginform
specifica tions . .
representa tion . .
implementation

~~~~ push ~~ (s.sp — s.sp’ + I ,~ s.v — oc(s.v’,s.sp,x))—
mt ,normal:: (s.sp 4- S.5p + 1; s.v[s.sp] ~ x);
otherwise:: FAIL;

~~~~ pop ~~j  (s.sp = s.sp’-l) =
normal,full:: s.sp 4- s.sp-1;
otherwise:: FAIL;

~~~~ top ~~ (x — s.v[s.sp)) .
normal,full:: x ~- s.v[s.sp]
otherwise:: FAIL;
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~~~~ empty ~ tt (b — (sp—O)) —

normal,full:: b ~ false;
mt:: b 4- true;
otherwise:: FAIL;

endfor m;

Since the states are used to select one of several alternative bodies for a function, the

state descriptions may be used as additional input assertions for the body selected. Thus,
for step 3 of the proof we may add to the precondition the disjunction of the (state)
conditions that can cause tha selection Oi that body. The notation “cdV ,i,x)”, which is used
in the output assertion of “push”, denotes a vector identical to “V” except that V~”x.
Finally, the symbol FAIL used above is intended to connote failure; we prefer to avoid a
detailed discussion of the exception mechanism in this paper and hence will avoid further
elaboration of this symbol here.

Na~ning and Scope

The previous section dealt with the general organization of forms ; in this section we
shall deal with some of the linguistic details of naming and scope. There are two issues to
be discussed here: one is almost at the level of syntactic detail, - but the other is
fundamental to the ability of a tQr~ 

to encapsulate an abstraction through information
hiding. Given the goals of this paper we would normally omit the first of these; they are
closely related , however , so we shall discuss them in sequence.

Consider the previous definition of “istacfc ”. We said earli~r that one or more
instantiations of this abstraction can be created by declarations , and that the operations
defined in the ~~~~~~~~~ may then be applied to them. For example ,

local sl ,s2: istack(10);

push(s I ,5);

a top(s2)—23 then.. .

But now suppose that another abstraction, call it “rstack ”, had been defined in the
same program and that it also defined a function “push”. We then have to decide which
push operation is being invoked in any given situation. The answer , of course, is that the
interpretation of operation names is context dependent. We know that in the example
above the correct “push” is the one in Istack” because its first parameter is an instance
of the istack abstract ion. The point can be made clearer by a slight change in notation; a
construct of the form “name 1.name2” is called a qual4fied name, its first component must

I
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be the name of an instance of some abstraction and its second component must be the
name of a function defined in the appropriate form. Thus,

si .push(5);

is an invocation of the “push” function defined in the form of which “s I” is an instance.
Although this notation is more explicit about the operation named, it has an asymmetry
which is often displeasing.7 Thus, Alphard permits both sty les of naming, i.e.,

f(p l,p2,. . .,pn) pl.f(p2,.. .,pn)

Al though this convention also has some problems, they do not arise in the examples in this
paper (see [Geschke75, Ross7O ) for discussions of the “uniform referent” problem); we
shall use whichever notation seems most appropriate in a given instance. In all cases ,
however , func tions are defined as though the abstraction instance were its first parameter.

The more substant ive issue is that of scope -- which names are defined where.
Consider t he “is taclc ” !2~~ 

again. Inside the form several names are defined; some of
these are the abstract operations , e.g., “push”, others are related to the representation,
e.g., “sp”. From the discussion above we know that the operation names are available
outside the form as qualifiers of instance names. In Aiphard, however , names such as “sp”
are not available outside the form.

Only names defined in the specifications par t of the form are legal outside the form
definition (inside is another matter). If names such as “sp” were legal outside the 

~~~~
the abs tract program could access , and possibly modify, the concrete representation. If
this were allowed, both theoretical and practical difficulties would arise. First , we could
not partition the proof technique as described above; specificall y, we could not ensure that
the concrete invariant was preserved between function invocations. Second, since the
representational information would no longer be hidden it would no longer be safe to
modify a form under the sole restriction that specified properties were preserved. We
would instead have to examine alt the uses of the abstraction to be sure that the
representational information was not being used in some clever , but obscure, way.

In summary, only the names appear ing in the specification part of a f~~~ 
are legal

qualifiers outside the form definition. In the examples so far all such names have been
f unction names; as we shall see in future examples, this need not always be the case.

7 For examp le, f or binary commutative operations such as “plus” it seems unnatural
to write “x.plus(y)” rather than “plus(x ,y)”.
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The general scope rules in Alphard are Algol-like,8 but with two important
exceptions:

1. Only those names appearing in the specification part of a form may be
used as qualifiers outside the form definition. (Note: all the names
defined in a f orm may be used as qualifiers inside the same L~.srn
definition.)

2. Only f orm names obey the usual block-structure convention on entering a
!.Qirn. Specificall y, only those variables defined outside a form which are
passed as parame ters are accessible inside the 

~~~ 
body.

The earlier paragraphs deal t with the rationale for the first of these restrictions.
The second restriction is imposed so that there are no free variables in a f.9~ y~ body; this
ensures that any dependency of the form on its environment is explicated in its parameter

• list.

An Aside on Primitive Forms

A basic question which must be answered in the design of any language is which
primitive types should be provided by the language and which should be left for the user
to define. The Alphard position is that all types but one are defined by forms and, at
least conceptually, could he (re)defined by the user. (The one primitive !.gjjn which can be
specified but not implemented in Alphard corresponds roughly to the untyped memory of
conventional computers.) To be usable, however , a collection of familiar and useful forms
are defined by a standcird prelude (vanWij ngaarden69, chapter 10], which is automatically
inserted at the beginning of every user ’s program. Throughout this paper we shall use
notions such as integer , real , boolean, vector , and so on; the reader may presume that
these are either provided by the standard prelude or have been explicitly defined by
other forms in the same program. In all cases , however , the reader should assume that
these provide the familiar facilities.

Example of a form Verification Restricted Stacks

In this section we shall illustrate the verification technique on the istack f.p~rn of the
previous section. First , however let’s pull together the pieces of the istack definition:

8 6
~ 

Algol-like we simply mean that the interpretation of a name depends upon its
neares t definition in a potentially nested, sta tic block structure. 

—~~ -~~~~~~~~ ~~~~~- - . - ~~-~~~~~~~~~~~~~~~~~~~~ - - - -
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f orm istack(n: integer) =

f~~gj nfor rn
specif ic atiori s

r~q~~res n>0;
let stack = . . . x~ . . . > re x~ is integer;
i n va r i a n t  O~leng(h(is tack)<n;
initia ll y ista clc=nultseq;
function

push(s :istack , x:integer) ~~ 0 s length(s) < n ~Q~j  s=s”~x,pop(s: is tack ) pre 0 < length(s) � n p
~~

j  s = leader(s ’),
top(s: is tack ) returns x: integer

pre 0 < length(s) � n ~~~j  x = last(s ’),
empty(s: istack) returns b: boolean

~~ b (s=nullseq);

~~presentat ion
unique ~‘: vector ( integer ,1,n), sp: integer m i t  sp ~ 0;
L~.Q (v,sp) = seq(v ,1,sp);
invariant 0 ~ sp ~
st~~es

mt when sp — O,
normal w hen 0 <sp <

f u l l ~~j~~~s p = n ,
err otherwise;

~~plementa tion

~~~~ push ç~j~j  (s.sp — s.sp’ + 1 t~ s.v —

mt ,normal:: (s.sp s.sp + I; s.v(s.sp] ~ x);
otherwise:: FAIL;

~~~~ pop gjj.j (s.sp = s.sp’-I)
normal,full:: s.sp ~- s.sp-1;
otherwise:: FAIL;

~2~1 
top ~~j (x = s.v[s.sp)) =

normal ,full:: x 4- s.v(s.sp)
otherwise:: FAIL;

~~~i empt y ~~j  (b (sp=0)) —

normal,f ulf:: b ~ fa lse;
mt:: b ~

- true;
otherwise:: FAIL;

endf orm~
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In the verification of stack , whic h is given next , the prec ondition for each body is
the conjunction of its in clause (which is defaulted to “true ”) and the union of the state
conditions for which that body is selected.

For the fp~y~

1. Representation validity
Show: 0�sp�n ~ 0�length(rep(x))~n
Proof: length(rep(x)) = length(seq(v , 1, sp)) — sp.

2. Initialization
Show: n>0 { sp~ O } rep(v , 0) = nullseq A 0�sp�n
Proof: rep(v , 0) — seq(v , 1, 0) — <>, i.e., nullseq

For the function push
3. Concrete operation

Show: (0—s. sp v 0<s.sp<n) A 0�s.sp�n { s.sp~ s.sp+ 1; s.v[s.sp]i-x )
s.sp=s Sp’+l A s.v=c/(s.v ’, s.sp, x) A 0�s.sp~n

Proof: 0�s.sp<n ~ 0�s.sp+ 1�n
4a. f~ holds

is true
4b. f

~pos t holds
Show: 0�s.sp�n A 0�length(rep(s.v, s.sp’))<n A s.sp—s.sp’+l A

s.v=o (s.v ’, s.sp, x) ~ s s ’~x
Proof: s=rep(s.v , s.sp) = seq(s.v, 1, s.sp’+l) — seq(s.v, 1, s.sp’)’-s.v(s.sp) —

seq(s.v ’, 1, s.sp’)~’x =

For the function pop
3. Concrete operation

Show: 0<s.sp�n A 0~s.spsn { s.sp4-s.sp-1 ) s.sp=s.sp’-l A 0~s.sp~n
Proof: 0<s.sp~n ~ 0�s.sp-1�n

4a. 
~ in holds

~ in is true
4b. 

~ post holds
Show: 0~s.sp�n A 0<length(rep(s.v, s.sp’))~n A s.sp—s.sp’-l ~ s— leader(s’)
Proof: s=rep(s.v , s.sp) = seq(s.v’, 1, s.sp’— l) = leader(s’). Note that

leader(s ’) is defined since s.sp’�l

For the function top
3. Concrete operation

Show: 0<s.spsn A 0~s.sp~n ( x~ s.v [s.sp] } x—s.v[s.sp) A 0�s.sp�n
Proof: Clear

4a. holds
f~ is true

___  _ _ _ _ _ _ _  ___  —- - -----~~ -- - ----k- .
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4b. /
~post holds

Show: O~s.sp�n A 0<length(rep(s.v , s.sp’))~n A x=s.v~s.sp] ~ x= last(s ’)
Proof: x~’s.v [s.sp) = s.v ’[s.sp’) = last(s ’). Last(s ’) is defined since s.sp’21

For the func tion empty
3. Concrete operat ion

(Normal , full ) Show: 0<s.sp<n A 0~s.sp~n { bk-fa lse } b = (s.sp=O) A 0~s.sp~n
Proof: 0cs.sp ~ false = (s.sp=O)
(Mt ) Show: s sp=0 A 0~s.sp~n { b~-true } b = (s.sp=O) A 0�s.sp�n
Proof: s.sp=0 ~ true = (s.cp=O)

4a. 7~in holds
f~in is true

4b. 
~ pos t holds

Show: 0~s.sp�n A b = (s.sp=0) ~ b = (s=nullseq)
Proof: b = (s.sp=O) = (rep(s.v ,s.sp)=nullseq) = (s=nullseq)

QED

The condition n�0 is used implicitl y in this proof. The stricter n>0 is needed only to show
that the four states are disjoint. Finally, note that the union of the mt , normal , and full

- ‘ states includes and that (
~pre for each func tion and IC specifically exclude the states

that would trigger the otherwise alternative f or the body. We therefore omit verifications
involving FAIL.

Generalizing Form Definitions

The form defines the abs tract notion of a stack-of-integers , but what does the fact
that the items to be stac ked are integers have to do with it? It seems that the abstract
notion of a stack ought to be independent of the kinds of things being stacked.9

We would like to be able to define a form such as

f.Qj~~ stack (T:~~j.~, n:integer)=
beginform

endform

and then create instantiations with statements such as

~ Perhaps one can argue that the fact that all items in a particular stack are the
same t ype, e.g., integers , is an abstract property of a stack , but it would be unfortunate if
we had to define separate forms for stacks of integers, stacks of reals, stacks of
charact ers, and so on. 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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local si:stac k(integer ,35), sr:s tack (rea l ,14);

which would make “si” a s tack of integers and “sr ” a stack of reals.

We shall do essentially this , but as we introduce this facility we must be very
careful t o retain the validity of the verification technique. In fact , we want to ensure

something stronger: that the resulting proofs are not complicated by the introduction of
this additional flexibility. Thus, we shall start with a careful examination of the proof
appearing in the preceding section.

Specifically, let ’s observe how the proof depends upon the fact that the items being
stacked are integers. A careful reading of the proof of istack reveals that it depends only
upon the property of the items that we have an assignment operation which obeys the
asstgnnzent axio m. ’° The reader is encouraged to examine the proof to verif y that this is
in fact the only property required, and therefore to see that the proof would be valid for
any type of item possessing this assignment axiom.

Returning to the language issues , what we want is a means for stating that the
parameter “T” above cannot be just any ~~ name; it must be the name of a !.Q~i!~ 

which
supplies the properties required by the proof (and, of course , by the bodies of the
concre te operations). The general mechamsm used to accomplish this will be discussed
below; f or the moment we will consider only the special case which handles the stack
examp le. With this addition the form “stack ” has bec ome a “type generator ” as mentioned
above rather than a simple type definition.

We shall append a bractcetea st <a L,...,an> to a formal parameter specificati on to
denote that t~e properties a1,...,a~ are required of a corresponding actual parameter.
Thus, in the present case we may write the stack form header as:

~~~~ stack(T: !.~ .~ <~->, n:integer )—
beginform

endf orm

The “<f-’
” attached to the 

~~ 
parame ter asserts that the actual ~~ 

names used in this
position must provide an assignment operation. The specifications part of the actual
parame ter form must assert the availability of this operation and assure that it obeys the
assignment axiom. We shall discuss these issues in greater detail below, but first we shall
give the full stack definition and a verification of a program using it. The full stack

10 The assignment axiom is:
P~ { x 4- e } P

if x is a simple variable. For subscripted variables the meaning of xli) :— e is x :— o~(x,i,e)
as in (l4oare72a].

___________________________________________
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definition differs fr om the version at the beginning of the previous section only in the nine
italicized lines, which are the ones that previously referred to “ist ack ” or “integer ”. Its
proof is identical to that given above.

~~~~ stack (T:J~~~<~->, n:~nteger)—
begin form
specific at ions

requires n>0;
Ict stack = .. . . .. > whrre x~ is T;
i n:iannnt O�length(stac k .) �n;
,n , t ia! l ’~ stack=nul lseq;
function

pus h(s:stac k , r:T) j~ 0 ~ length (s ) < n 
~~~ 

s s ” x,
pop (s:s tack) Dre 0 < length (s ) � a ~~~~~ $ = leader(s’),
top (s:s ta ck) returns x: T

ore 0 < length(s) ~ n 
~~

j x = last(s ’),
ernpty (s: istack) returns b: boolearz

~~~ b = (s=nullseq);

representation
j j~j q~ie v: vector(T ,l ,n) , sp: integer ~j ~~t sp ~ 0;

r.~i� (v ,sp) = seq(v ,1,sp);
invariant 0 � sp � n;
states

mt when sp = 0,
normal when 0 < sp <

full when sp n,
err otherwise~

implementation

~~~~ push out (s.sp = s.sp’ + 1 A s.v
mt ,normal:: (s.sp 4- s.sp + 1; s.v[s.spj
otherwise:: FAIL;

~~~~~~~~~ pop out (s.sp = s.sp’-l) —

normal,fu ll:: s.sp ~ s.sp- 1;
otherwise:: FAIL;

~~~~ top ~~j  (x = s.v(s.sp)) —

normal,full:: x ~ s.v[s.sp]
otherwise:: FAIL;

k— 
——- — - -
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~~~~ empty ~~j  (b — (sp—O)) —
normal,fufl:: b 4- fa lse;
ml:: b 4— true ;
otherwise:: FAIL;

endform~

tising Stacks in a Progra m

Once the stack form is defined, programs may declare and use stacks. The following
program uses a stack as defined by this form to traverse a (finite) binary tree and count
its tips. It also uses iteration and an explicit stack of binary trees (Burstall74, London75].
A binary tree is defined recursively to be either nit or to have a left son and a right son
w hich are both binary trees. The number of tips is defined recursively by

tips(t) if t=nil then 1 else tips(leftson(t))+tips(rightson(t))

We shall not define a binary tree f~Qj~~ exp licitly, but shall presume that it meets at least
the specificat ions

isleaf(t:binary tree) returns b:boolean p~~
j  b = (t=nil),

left(t:binarytreo) returns u:binarytree ~~ t#ni l ~Q~j u=leftson(t’),
rig ht(t:binarytree) returns u:binarytree pre t~nil ~~~j  u=r ightson(t’)

We shall also presume a tree assignment operation satisfy ing the assignment axiom. In
st a t ing the maximum permissible depth of the stack we use the height function defined by

height( t) = jf. t=nil ~~ 
0 

~~~ 
1+max(height(leftson(t)), height(rightson(t)))

Suppose the tip counter is specified by

func tion tipcount(t:binarytree) returns count:integer p~~
j  count— tips(t)

Then the ~~~~ 
of the function tipcount might be 

~~~~~~~~~~~~~~~~
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tipcount oy.~ (count=t ips(t))

begin
u~ .que s:stac k(binary tree , max(height( t),1 )), x:binarytree;
x.-t; count’-1;
invariant t ip s (t ) = count — 1 + ti ps(x) + SIGMA U(S tips(u);
while — empty (s) v — isleaf (x ) do

if is leaf (x ) then (count4-count + 1; x’-top(s); pop(s))
else (push(s , right(x)); x~ left (x));

end

Throughout the body of tipcount the stack s means the abstract definition in terms of a
sequence. In particular , SIGMAu($ f(u) means 0 if s=nullseq and otherwise

f ( last (s )) + SIGMAu(leader(s)f(u)

We shall verify the concrete operation of this body (i.e. proof step 3). Note first
that the requires clause (n>0) of the stack form is satisfied. We shall use the usual proof
rule for the while statement. ’ Four verification conditions suffice; they are in the form
obtained by backward substitution with each function operation of a 

~~~ 
replaced by its

~~~ condition

1. (entry to while)
Show: tips(t) = 1 - 1 + tips(t) + SIGMAU(nuIISeqLiPS(U)

where “nullseq” is obtained from the initially clause of stack.
Proof: The SIGMA term is 0.

2. (while to exit)
Show: tips(t) — count - 1 + tips(x) + SIGMAu(s tips(U) A

- (s,’nullseq v x,’nil) ’ count = tips(t)
Proof: The SIGMA term is 0 because s—nullseq. tips(x)=1 since x—nil.

The while rule is:
P A B I S 1 P

P(wh Ue B d o S } P A - B
This is a special case of the Alphard iteration construct; it behaves as you would expect a
while to behave. A more general iteration mechanism, which allows the author of a f.~rn to
specif y how iterations involving objects of that type are carried out, is described in
(Shaw76b].

_ _ _ _ _
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3. (~~ j ie thr ough then to while )
Show: t ips(t ) — count - 1 + tips(x) + SIGMAu(s t i ps(u ) A

(s,4 nullseq v x #n,t) A x — nil D

tips(t ) count + 1 - 1 + t ips(last(s)) + SIGMA u(lea der(s)t
~
P5(U)

Proof: x— ni t means s~nullseq whence las t(s) and leader(s) are defined
(i.e. the ore conditions for top and pop are satisfied). x=nil also
means t ips (x )— 1. The conclusion follows by the definition of
SIGMA.

4. (while through else to while)
Show: tips(t ) — count - 1 + ~ips(x) + SIGMAU(S tips(u) A

(s,~nullseq v x ,’nil) A x#ni l ~
t ips(t ) = count — 1 ~

. tips(leftson (x)) + SIGMAu(s.~.rightson(x)t~
PS(U)

Proof: x,’nil means the ore conditions of both left (x ) and right(x) are
met. x~ nil also means ti ps(x) tips (leftson(x )) + tips(rightson(x)).
The conclusion follows by the definition of SIGMA. It remains to
show that the pre condition of push is met. To do this it is
convenient to add two terms to the while assertion:

length(s) + heighUx) < heightU)
S=

~~
S

~~
, 

~~~ ~k> A 1�j~k 
~~ 

j + height(s~) ~ height(t)
Assuming these two terms are indeed invariants (proof omitted),
the ore condition is met because x,’nil means height(x) ~ 1, i.e.
length(s) < height(t).

QED

Further Parameterizat&on of Forms

The “ <> “ notation used above is actually much more broadly applicable than might
be suggested by the st ack example. To see this, and to motivate another related facility,
we shall t urn away from the ~~ concept for a moment and consider the more traditional
functional abstractions provided by subroutines. Suppose that we wished to write a
subroutine which tested for the equality of two vectors. Using a pseudo-Aiphard notation
such a subroutine might appear as:

function eqvecs(A ,B:vector(integer ,1,10)) returns (eq:boolean) =

begin
for i from 1 to 10 do

~ Af i] ,’ B[i) thQn (eq~false; relurn)
eq~true;

(This example is not “real” Alphard because of the iteration statement; the companion
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paper (Shaw76b) defines the Alphard iteration construct and presents this example in its
correct form. )

Much as with the stack example , this program is quite unsatisfying. We would at
least like to be able to write a function that would cover a broader class of vectors - - say

t hoce of arbitrary length. Unless we do this we will be forced to write a different
subroutine for each possible vector iength.12 But even if we were to accommodate
different lengths, we might still have to write different subroutines for each possible
element type. Once again, if we examine the proof of this subroutine we will find that the
onl y dependence on the element t ype is the existence of a not-equal operation.

The correctness of the implementa tion of any parameter ized abstraction depends on
certain properties of the parameters and is completel y independent of others. An abstract
“eqvecc ” subroutine should require that: (1) its two parameter vectors be the same length,
(2) the elements of both vectors be the same type, and (3) the type of the elements
provide a not-equal operation. It should not require that: (1) the vectors be of some pre-
specified length, (2) the upper and/or lower bounds of these vectors have some pre-
spec ifie d v alue , or (3) t he elements have any other properties.

The “ <> “ notation provides a means of specify ing the required properties of actual
parameters. We shall now introduce questionmark identifiers to permit the specification of
non-requirements. Oefuung occurrences of such identif iers consist of a “?“ immediately
followed by an identifier , e.g., “ ?xyz ”; t hey appear in formal parameter lists and are
assi gned meaning from the corresponding actual parameters. Multiple occurrences of the
same ?identif ier are required to have the same meaning in the same scope. Applied
occurrences of these identifiers are uses of the identifiers without question marks. These
may appear anywhere in the scope of their definition -- thus, for examp le, they may be
used to declare variables of the same type as an actual parameter 13.

The use of both the “<>“ notation and ?identifiers is illustrated by the foll9wing
pseudo-Aiphard coding of the “eqvecs” subroutine. (The syntax of the iteration statement
s t ill prevents this from being proper Alphard.)

12 Such a restriction is one of the less pleasing aspects of Pascal
(l-labermann73, W irth75].

13 There are somewhat pathological situations involving recursive procedures in
w hich this scheme will not work; in particular in these cases it is not possible to determine
the proper types at compile time. We choose to ignore these pathologies here.

~

—-



ALPUARD: Introduction to Language and Methodology Page 31

func t ion eqvecs(A ,R:vec tor (?t<#> ,?lb,?ub)) returns (eq:boolean) =

for i from lb to ub do
A[i] # B[i] then (eq.-fa lse; return);

eqd-true;
end

Note that in this imp lementation the symbols lb and ub appear as applied
occurrences in the for statement. The intent is that , whatever the lower and upper
bounds of the actual-parameter vectors , these values will be used as the initial and final
values of the for statement range. Also, note that the form of the formal parameter list
ensures that the two actual parameters will have the same element types and bounds.

We shall not prove this implementation of “eqvecs ” (the verification of the true
Aiphard versi on appears in [Shaw76b]), but the reader should readily be able to visualize
such a proof and to see that it has not been affected by the generalizations introduced.

Protection and Access Control

The “<>“ notation introduced above is clearl y an extension of the familiar notion of
type checking in programming languages; in this section we shall try to show its relation to
the protection facilities of modern operating systems , especiall y t hose using t he capability
based protection model. In the foregoing discussion we stressed the restrictions imposed
on ac tual parameters by the appearance of the “ <> “ notation in a formal parameter list.
We did not discuss either the restrictions it imposes on the body of the subroutine (or
f orm) or the precise nature of what may appear between the angle-brackets. Those
issues will be treated here as well.

Note that “x:X<p> ” appearing in a f ormal parameter list is intended to assert that the
body depends on propert y p, and onl y on property p, of the parameter. Now, from our
earlier discussi on we know that the Only visible properties of an abstraction are those
specified in its specificati ons part. Thus we require that the name “p” be one of the
names defined in the ~pecifica tions part of the form X. Furthermore , since the abstraction
being defined claims to depend onl y on the property p, we shall restrict the body of the
abs traction to use only this property. That is, all qualifications of x other than “x.p” (or
p(x ,...)) are illegal. (Note that this is a purely syntactic , compile-time , check. Also note that
we must check that any func tions called by the body of the abstraction , where x is a
parameter to that function, must also require no more than “p” access to it.)

In the terminology of operating systems the specifications part of a form defines a

- - - — ~~~~- ~~~~~~~~~~ - - ~~~- .- —~~~~~~~~~— ~~- - -~~~~ . - - - - - - - -- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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set of accesses to objects of the t ype defined by the form . The “ <> “ notation defines both
the access rig hts requued of the actua l parameter and allowed to the body. Once the
actual parameter has been bound to the forma l at execution time the formal becomes the
name of a capab thty [Fabry 7~ , Graham7 2, Jories 73, Jones l4, Lampson7l) for the actual.
A t compile time the format parameter specification may be viewed as a template [Wu If 74)
for legal ac tuals .

The analogy with the capabilit y-based model of protect ion is not yet comp lete. In
an operating syste m it is generall y possible to restr tct access rights; the “ <> “ nota t i on

permits us to do this at f ormal/actual parameter binding, but may also be useful in other
c ontexts. For verif ication purposes , for example , it may be convenient to know that in
some block no side-effect producing operations are applied to a specific variable.

A full treatment of a mechanism which provides this type of protection may be
found in [Jones76) For our present purposes we shall simply note that the “ <> •‘ no t ati on

is permi tted in several additional contexts , tw o of which are discussed below , and in these
c ontexts imply only a rights restricti on (not also a requirement as in format parameter
specific ati ons). These contexts are declarations and actual parameters. Consider the
declaration:

~~~ i:integer <4 ,_ ,=,4->;

This declaration defines a variable of type integer to which only the operations “+“,“-“, “=“,
and “ -“ may he app lied. Any other operations defined by the integer fo~~ will be illegal
-— specifically such things as “

*
‘ , “1”, and re lational tests. Such a declarat ion might be

used for a variable which is intended only f or use as a counter , for example.

By attaching a rights restriction to the actual parameter of a subroutine invocation
the user may ensure that only certain operations are applied by the subroutine. Thus, in

the program:

begin

~~~~ 
i:integer;

the main program has all access rights to the variable “i”, but restricts the operations that
may be performed by “f” to those listed. This is, perhaps, a somewhat strained example
since the more common case will be to restrict side-effect producing operations; hopefully,
however , it illustrates the point. Once again let us emphasize that this is a purely static ,
compile-time check. At compile time , t he righ ts pernutted by the actual parameter are
compared to those required by the formal; if the former are not a superset of the latter a
compile-time error message is generated. There is no run-time overhead. 

-~~~~~— ... -~~~~~~~-~~~~~~~~~~ - ---~~~~~~~~~~~ .- -- -~~~ - - - —-~-— --- ~~~~ -~~~~~ 
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___ 
-~~ - . ~~~~~~~~~

-

ALPHARD: Introduction to Language and Methodology Page 33

Now let’s turn to the question of what may be written between the angle bracke ts,
especiall y in the context of a for mal parameter specification. To this point we have simply
wr i t ten the name of a property, which is generally a function name. This is sufficient in
the cases where the type of the forma l is spec ified, bu t no~ when the type is
characterized by a ~?identifier. Consider an examp le which inv o lves less sugg es t ive names

than those used previousl y:

function f(a:?T~h’)= . . - ;

The intent is, as before , that the function “f” depend only on the fact that the actual
par ameter be of a t ype which provides an “h” operat ion, not its name. But suppose that
the type of the actual par ameter does provide an operation named “h”, but it has nothing
to do with the operation which the writer of “f” had in mind. In fact , the writer of “f” , or

al ternativel y the c orrectness of “f”, depends on some input-output relation of the “h”
operation. Thus, we permit pr operties appearing in the angle brackets to be described in
exact ly the same manner as properties appearing in the specifications part of a form

definition. For example ,

funcli f (a:’T<h(T ,integer) re turns (b:boolean) pre (~ ~~~~~~~~ ‘~2
>

~

When such specifications appear the problem of validating the legality of an actual
parameter is more complex than previously. We must not only establish that the ~Q!~~
defining the type of the actual parameter provides a property named “h”, but als o that: (1)
its parameters and resul t are of the appropriate type and (2) that the precondition
required in the spec ification of that property is implied by f~ and that the postcondition
of that property is sufficien t to imply 

~ 2• We do not foresee this proof as part of the
compilation process , but rather as another proof required in the verification of the
program.

Another Example: Queues

As a further illustration of both the Alphard language and the verificat ion technique,
we now present another example. The example is a f inite capacity f ifo queue; in all
respects but one it is similar to the stack presented earlier. The important difference is
that the representation of a given queue confi guration is not unique; that is, there may be
several concrete representations for the same abstract object. We present one program
and its verification with little comment; we then present another implementation of the
same specifications.

The specifications d,scribe the behavior of queues in terms of sequences. Queues
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are implemented using a vect or to record the entries and integers to indicate the front,
bac k, and current length. The enqueue operator , “enq ”, extends the queue toward higher-
indexed vector elements , wrapp ing around to the zeroth element when the indices are
exhaus ted. The dequeue operation , “deq”, re turns and removes elements in the order in
which they were inserted. The functi on “size” re turns the current queue size.

f orm fifo (T:fo rm<~ >, n:integer)=
beginform

spec if ic at ions
requires n>O;
le t fifo = < . . . x 1 . . . > where x 1 is 1;
invariant O~length(fif o)~ri;
initially fifo=nullseq;
function

enq(q:fif o, x:T) pre O�length(q)<n ~~~ q=q’~x
deq(q:fifo) returns x:T

ore O<leng th(q)�n ~~~ x=first (q’) A q=trailer(q’);
size(q:fif o) returns x:integer p2~j  x=length(q’)

represen tation
un~q~~ v:vec tor(T ,O,n- 1), f ,b,num:integer j~jt (f~-num~-O; b~ n- 1)

~~Q(v ,f ,b,num) = if num=O then <> else
if f~b then seq(v,f ,b) else seq(v,f ,n- 1)~.seq(v,O,b);

invariant O~num�n A O~f�n- 1 A Osb~n-1 A

(num=Q A n—(b+n-f)mod n + I v num>O A num=(b+n-f)mod n + 1);
states

mt ~~~ num=O,
normal when O<num<n,
fu ll  

~~~~ 
num=n,

err otherwisej

implement at ion

~~~~ enq out (q.b=(q.b’+l)mod n A q.v—o~(q.v’,q.b,x) A q.numBq.num’+l) —

mt ,normal:: (q.b4-(q.b+1)mod n; q.v[q.b]4-x; q.num~q.num+1);
otherwise:: FAIL;

~~~~ deq ~yj~ (q.f—(q.f’+I)mod n A x—q .v ’[q.f’J A q.num—q.num’-I) —

normal,full:: (x..q.v[q.f) q.f~-(q.f+1 )mod n; q.num.-q.num- 1 h
otherwise:: FAIL; 
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~~~~ size out (x~q.num’) =

mt ,normal,full:: x4-q.num;
err:: FA IL;

endf orm

To save space and reduce clutter , the proof omits from IC the two terms O~f~n-1
and O~b~n- 1. That they are part of IC f ollows because of the mod operations in the
bodies of enq and deq and because of m it . The requires clause n>O guarantees disjoint
states and also makes f he “mod n” operation well-defined. As in the istack proof ,
verifications involving FAIL are omitted.

For the frj jy .~

1. Representation validity
• Show: O�ntim~n A (num=O A n=(b+n-f)mod n + I v num>O A

nurn=(h+n-f)mod n + 1) ~ O~length(rep(x))~n
Proof: O�num�n, so the conclusion follows by showing length(rep(x)) — num.

Firs t , num=O ~ length(<>)=O=num. Second, f�b A num>O ~
length(seq(v ,f ,b)) = b-f+1 = b+n-f imod n + I — num. Third, f>b A
num>O ~ length(seq(v ,f ,n- 1)~seq(v ,O,b)) = (n-f)+(b+1) — (b+n-f)mod
n + 1 = n u m .

2. Initialization
Show: n>O { f’-num’-O; b~-n- 1 rep(v ,O,n-1,O)=nullseq A

Proof: rep(v ,O,n-1,O) = <>, i.e., nullseq. For I~ note that the
- ;  first term of the or holds for both n—i and n>l

As convenient notation below, let z — (q.v, q.f, q.b, q.num). Furthermore, steps
4b in the proof are simpl~fied if we rewrite the rev function. Define seqm(v , f,
b, n) to be the sequence

<Vf , V(f.I)mod n’ V(f+2)moQ ~~, .  . .,

i.e., the indices are computed mod n (the “m” in seqm sugges ts “mod”). Then

~~p(v,f,b,num) - if num*O Lh~~ 
c else seqm(v,f,b,n). To see that this is the

same as the original rep function, firs t notø that O~f~n-1 and O~b~n- 1. If
numnO it is clear, if f~b then (1 +i) mod ii — i +i for 1�isb-I so seq(v,f,b)
seqm(v,f ,b,n). If f>b let j ’.n-f. Then

uq(v,f,n-1)’seq(v,O,b) — seqm(v,f,n-1,n)”seqm(v,(f+j)mod n,b,n) — s.qm(v,f,b,n)

- - ~ .~r .  —
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For the function enq
3. Concrete operation

Show: O~q. num<n A I~ { q.b~-(q.b+ 1)mod n; q.v[q.b).-x;
q.nurn’-q.num+l } /

~out A IC
Proof: 

~out is clear . O~q.num<n ~ O~q.num+ 1~ n. The las t term of the or
becomes q.num+i = ((q.b+1)mod n + n-q.f)mod n + 1. If n— i then
q num=O and it holds. If n>1 then ((q.b+1)mod n + n-q.f)mod n i. 1
— ((q.b+n-q.f)mod n + I)mod n + 1. If q.num>O this is q.num mod n
+ 1 = q.num+1. If q.num—O this is n mod n + 1 = 1 q.num+1.

4a. 1
~in holds

1~in is t rue

4b. /
~post holds

Show: I~ A O~length(rep(z ’))<n A /~out (z) ~ q = q’~’x
Proof: q = rep(z) = seqm(q.v ,q.f ,(q.b’+l)mod n,n) =

seqm(q.v ,q.f ,q.b’,n)—q.v [q.b] = seqm(q.v’,q.f ’,q.b’,n)~x — q’Nx

For the function deq
3. Concrete operation

Show: O<q.num~n A I~ { x4-q.v(q.f); q.f4-(q.f+1)mod n;
q.num’—q.num- 1 } /

~out A
Proof: 

~out is clear . O<q.num~n ~ O�q.num-1�n. The rest
of follows similarl y to enq.3.

4a. f~~~ 
holds

is true
4b. f

~post holds
Show: IC A O<length(rep(z ’))�n A /3~~t (Z) ~ x = first (q’) A

q — trai ler(q’)
Proof: x — q.v’[q.f’) = f i r s t(q ’). First(q ’) is defined since

length(rep(z ’))>O. q — rep(z) — seqm(q.v’,(q.t’+l)mod n,q.b’,n) —

trai ler(q’)

For the function size
3. Concrete operation

Show: O�q.num�n A IC { x4-q.num } x—q.num’ ‘~
Proof: c lear

4a. /
~in holds

is true
4b. /~post holds

Show: 1~ A x=q.num’ ~ x=length(q’)
Proof: As in s tep 1, Ic ~ length(rep(z))—num. Hence x — q.num’ —

length(rep(z ’)) — length(q’)
QED

-— 
—-.-

- 
~~~~~~—~~~ —— -  - - - - .-~~~~~~~~
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Another way to imp lement a queue is to use a vector (T ,0,n) rather than a
ve c tor (T ,0,n-1). The integer to indicate c urrent length can be eliminated because now
front and back are suffici ent , The specificati ons part is unchanged; the representation and
!rnpiementat lon parts do change in various ways. According ly, the proof of the form will
change in each of the four steps. The modified proof steps are similar to the previous
ones, perhaps even easier because I~ is much simp ler . The previous proofs provide useful
guidance , at least to a human. What does not change , of course , is a proof that uses the
fifo form because the ~p~’ci f ica t ions are identical. The modified form and its proof are
given next. Here 2 (q.v, q.f , q.b).

form fi fo (T:form<.- >, n:integer)=
begi nfor m

specifications (identical to the ori ginal fifo f2~~)requires n>0;
f i fo ~~~~. .  . x i . . .  > where x1 is 1;

in”ariant O~length (fifo )~n;
int~ j~~ fifo=n ullseq;
function

enq(q:f ifo , x: T) pre O~length(q)<n ~~~ q=q’~’x
deq(q:fifo) returns ~:T

p.~~ 
O<lerigth(q)sn ~~~j x=first (q’) A q—trai ler(q’);

size(q:fifo) returns x:integer ~~~ x=length(q’)

representation
unique v :vect o r(T ,0,n), f ,b:integer ir~t (f ~O; b~ n);

~~~(v ,f ,b) if f~ (b+1)mod(n+j ) then <> else seqm(v,f ,b,n+ 1)
invarian t 0~f~n A 0�b~n
s t ates

mt when f= (b+I)mod(n+1),
full when f=(b+2)mod(n+1),
normal otherwise~

implementation

~~~~ 
enq out (q.b=(q.b’+I)mod(n+l) A q.v=c*~(q.v’,q.b,x ))

mt,normal:: (q.b~ (q.b+ 1 )mod(n+ 1); q.v[q.b]~x);
otherwise: : FAIL;

I
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~~~~ 
deq out (q.f— (q .f ’ +l)mod(n+ l) A x=q.v ’[q.f’)) —

normal ,full: : (x*-q.v[q.f]; q.f~(q.f-4’I)mod(n+I));
otherwise:: FAIL;

~~~~~~~~~~ size out (x=(q.b’-q.f’+n+2)mod(n+1))
x4-(q.b-q.f+n+2)mod(n+l);

endform

For the form

1. Represe ntation va lidity
Show : 0~f�n A O�b�n ~ 0�length(rep(x))�n
Pr oof: Lerigth (<>) = 0. Length(seqm(v,f,b,n+1)) = (b-f+1+n+1)mod(n+1) so

Oslerigth(rep(x))�n. (If f~ (b+1)mod(n+1) then 0~lerigth)

• 2. Initialization
Show: n>0 f~ 0; b’-n } rep(v ,0,n)=nullseq A
Proof: Since 0=(n+1)mod(n+1), rep(v ,0,n)=<>. 1~ is clear.

The three concrete operations (steps 3) are clear. The three steps 4a follow since
each 

~ in is true.

For the function eng
- 

- 

4b. f
~post holds

Show: 1c A 0~Jength(rep(z’))<i i A f~0~t (z) ~ q = q’~x
Proof: q = rep(z) =seqm(q.v,q.f ,(q.b~+ 1)mod(n+1),n+ 1) =

seqm(q.v ,q. f ,q.b’,n+ I )‘.‘q.v(q.bJ seqm(q.v ’,q.f’,q.b’,n+I )~‘x —

For the funcuon deq
4b. 1

~post ho lds

Show: I~. A 0’~’length(rep(z ’))~n A 
~~~~~ ~ x — first(q’) A

q = trailer(q’)
Proof: x = q.v’(q.f’) = f irst(q~). First(q’) is defined since

length(rep(z ’))>O. q — rep(z) — seqm(q.v’,(q.f’+l)mod(n+l),q.b’,n+l) —

tra iler(q’)

For the function size
4b. (

~post holds
Show: I~ A x=(q.h’-q.f ’+n+2)mod(n+1) ~ x— leng th(q’)
Proof: x = (q.b’-q.f’+n+2)mod(n+1) — Iength(rep(z’)) — length(q’)

QED 

~~~~~~-~~~~~~~~~~ - -  -
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For verifications invoIv~ g FAIL , it is convenient to use the facts

- 
length(rep(v,f,b))=0 iff f=(b+1)mod(n+1) -

length(rep(v ,f .~’i))=n iff f=( b+2)mod(n+1)

Conclusion

We have described the data abstraction facilities of the Aip ha rd la ngu age and the
associated verification methodology. In this conclusion we shalt attempt to allay some
fears which our pr ogramming colleagues may have after reading this paper, and then we
shall return t o the issue raised in the introduction: the symbiotic effect of methodological
and verification concerns in the design process.

Much of the effo rt expended in the design of programming languages over the past
fifteen years has been aimed at improving the c onvenience with which a programmer may
express his algorithms. A lphard in some ways represents the antithesis of this trend. In
general , f or example , Alphard programs are somewhat longer than similar Fortran or Algol
pr ograms. (The size increase seems to result mainly fr om the requirement that
spec ification and verification information be supplied. Several of our examples , such as

the “simpleset ” f orm developed in (Shaw76b] and the t ree manipulation program in
(Shaw76a), sugges t further that the growth may be illusory.) We believe this expansion
to be comp letely acceptable for several reasons:

1. It is not clear that the concern for convenience has in fact saved
programmers much work. Although isolated examples of the utility of
elaborate features , e.g., array manipulation in PL/ I, may be f ound, the

data on actual language usage [A lexander72 , Xnu t h7 l, Wichmann70 ,73]
sugges t that these features are so rarely used that the labor saved is
vanishingly small.

2. Actual coding generall y represents only a small frac tion of the total effort
expended on a project (e.g., 15-251. or less), whereas debugging, system
integration , and testing, represent a large frac tion (e.g., 30-50Z or
more)(Goldbergl3). Thus, even if we were t o double coding time (which
we do not believe wilt happen) but in the process could halve the other
times , to tal project time could be reduced. Aiphard addresses primarily
the latte r costs. Suppose we were to change the representation and
implementation , but no~ the specif icat ions, of the stack form. The form
itself would have to be reverified, but the programs using it (e.g.,
tipcount) and the verifications of those programs would remain
unchanged.
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3. We hope that w ith a language such as Ai phard , the promise of extensible
languages will be realized -- that a library of useful abstractions will

develop, arid that programmers will thus simp ly not have to program as
much to get a new system. Although the notion of program libraries is
an old one, it seems (to us) to have had less impact than the notion
warrants. Our hypothesis is that the availability of verified abstractions
in the library will change this , but that hypothesis cannot be tested yet.

We appreciate that there is considerable scept icism in the programming community
concerning the practical applicability of verification techniques. This scepticism extends to
both automated verification aids (e.g., theorem provers) and the ability of “typical”
programmers to write the requisite formal specifications. To the first concern we cite the
accomplishments of existing verif ication systems (Good75, vonkenke75, Suzulci75]. All the
exan,plcs in this paper and in [Shaw76a , 76b] appear generally within the capabilities of
these systems. As for the second issue, two of the authors (WuIf and Shaw) are primarily
programmers , not verifiers; on the basis of our experience thus far we all believe that the
formulation of the specifications is a learnable formalization of what systems analysts do
anyway. We believe the potential gains more than justify the training required.

The practical programmer may also question the potential (in)efficiency of Alphard
programs; the pragmatic programmer who has experimented with some of the newer “high
level” languages has amp le cause to ask such a question. The intended application area
for A lphard includes large systems programs where efficiency is often essential. We
believe very efficient code can be comp iled for Alphard programs , although the nature of
this paper and the material presented do not tend to support this position. We can at
present defend our belief with only one observation on the present discussion. In typical
hi gh level languages the compiler-writer makes certain implementa tion decisions (for
examp le, how arrays wil l be represented); since these decisions are irrevokable , the
programmer cannot choose representational optimizations which will make a particular
program more time or space efficient. The usual argument is that these decisions must be
made by the compiler -writer to prevent the programmer from making a mistake and
hurting himself. Alphard takes a totall y differen t position: all such decisions may be made
by the programmer (if he chooses), but we do demand that he verify that they are correct.
(That s why names such as “integer ” arid “vector ” are considered as simply ordinary f2~

j
~names which are provided by a standard prelude.) In effect, we have no objection to dirty

coding tricks so long as they are correct and can be verified.

Now let us return to the interaction of verificat ion and methodology in our design.
It is perhaps simplistic to observe that the things which are easily understood (that is, the
things which we can informally convince ourselves are true) are usually easy to prove
formally. Conversely, the things which are fam iliar or admit of a simple formal description
tend to be easy to understand. This observati on is the basis of our remarks.

—.- --

~
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During the design of Alphard, we repeatedl y proposed “features ” which either were
diff icult to formulate proof rules for or which looked suspect on methodological grounds.
We usi.ially found that such a problem signalled an unforeseen problem in the other
domain. For examp le , our original for statement was much more elaborate than the one
described in ~Shaw76b~, but seemed plausible on methodological grounds. Its verification,
however , was a horror to behold. Subsequentl y we have become convinced tha t the
complexity of its verification was symptomatic of a difficulty which any reader would have
in attempting to understand the statement or it s use.

Conversely, good ideas in one domain generall y proved to be good in the other as
welt. The whole form concept, for example , was introduced for methodological reasons. It
is this factorization and isolation , however , which appears to make either hand or
mechanical verif ication feasible. Similarl y, the notion of generators as described in
[Shaw76bJ was introduced on methodological grounds , but is simplif y ing the verification of
many loops. Since loop control is implicit rather than exp licit , one verifica tion of that loop
control suffices. Various predicates were introduced because they were needed for
verification , but their presence seems to direct our thinking toward things which, on
methodolog ical grounds, we ought to worry about. Finall y, the explication of the
verif ica tion technique exposed the need for certain features , e.g., the ir~t clause in the
representation part , which at best were thought of as conveniences and at worst would
have been missed comp letel y on the basis of methodological and/or language
considerations alone. Dijk stra [Dijkstra75J describes in general terms related experiences.

One closing point: Alphard has no t yet been imp lemented. Although an
implementati on is now underway, the authors and their colleagues made an early and
c onscious decision not to implement too earl y, thereby avoiding premature commitment to
design decisions. Although we may have frustrated some of our colleagues at other
research institutions by changing the language almost daily, we believe this has been the
right approach. We hope, but will not promise, that the publication of this document and
of [London76, Shaw76a , 76b) represents a stable point in those features of the language
w hich have been discussed.
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Appendix A
Formal Definition of a Sequence

In the examples presented in the body of the paper the notion of a (mathematical )
sequence was used several times. An axiomatic definition of a sequence may be found in

[Hoare 72a); a version adapted to the needs of our examp les is included below for
complete ness .

1. Let 0 be a set called the domain of the elements of a
sequence; then

(a) <> is a sequence, the nuLl sequence , sometimes denoted
“nullseq”.

(b) if x is a sequence and d D , then x .<d> is a sequence
(c) the only sequences are those specified by (a) & (b)

2. The following functions and rela tions are defined:
(a) last(x ”~d>) df d
(b) leader(x ”<d>) df x
(c) x~”(y~’z) df (x~y)~z
(d) first(<d>) df d

D f ir st (x~’<d>) =df f irst (x )
(e) trai ler(<d>) df <>

x~ <> ~ t rai ler (x~”<d>) df trailer(x)”<d’
Note: “first” , “last” , leader , and “trailer ” are not defined on

the null sequence, <> .
(f ) length(<>) df 0

length(x~”<d>) df i+length(x)

3. The notation <d 1,d2,...,d~> is an abbreviation for
<>~ <d 1 ~~~~~~~~~~~~

4. If V is a vector whose elements are in D and n and m are
integers, then “seq(V ,n,m)” is an abbreviation defined by:

n>m ~ seq(V ,n,m) df <>
n~m D seq(V,n,m) df

5. The definition of equality of sequences is included in 1 and 2
as the two theorems:

x—y iff (x—y~<> v f irst(x )—fi rst (y)Atrailer(x )~trailer(y))
x~y if f (x—y— <> v last(x)—last(y)Aleader(x) ’.leader(y))


